Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Large-scale co-expression approach to dissect secondary cell wall formation across plant species.

Identifieur interne : 002E11 ( Main/Exploration ); précédent : 002E10; suivant : 002E12

Large-scale co-expression approach to dissect secondary cell wall formation across plant species.

Auteurs : Colin Ruprecht [Allemagne] ; Marek Mutwil ; Friederike Saxe ; Michaela Eder ; Zoran Nikoloski ; Staffan Persson

Source :

RBID : pubmed:22639584

Abstract

Plant cell walls are complex composites largely consisting of carbohydrate-based polymers, and are generally divided into primary and secondary walls based on content and characteristics. Cellulose microfibrils constitute a major component of both primary and secondary cell walls and are synthesized at the plasma membrane by cellulose synthase (CESA) complexes. Several studies in Arabidopsis have demonstrated the power of co-expression analyses to identify new genes associated with secondary wall cellulose biosynthesis. However, across-species comparative co-expression analyses remain largely unexplored. Here, we compared co-expressed gene vicinity networks of primary and secondary wall CESAsin Arabidopsis, barley, rice, poplar, soybean, Medicago, and wheat, and identified gene families that are consistently co-regulated with cellulose biosynthesis. In addition to the expected polysaccharide acting enzymes, we also found many gene families associated with cytoskeleton, signaling, transcriptional regulation, oxidation, and protein degradation. Based on these analyses, we selected and biochemically analyzed T-DNA insertion lines corresponding to approximately twenty genes from gene families that re-occur in the co-expressed gene vicinity networks of secondary wall CESAs across the seven species. We developed a statistical pipeline using principal component analysis and optimal clustering based on silhouette width to analyze sugar profiles. One of the mutants, corresponding to a pinoresinol reductase gene, displayed disturbed xylem morphology and held lower levels of lignin molecules. We propose that this type of large-scale co-expression approach, coupled with statistical analysis of the cell wall contents, will be useful to facilitate rapid knowledge transfer across plant species.

DOI: 10.3389/fpls.2011.00023
PubMed: 22639584
PubMed Central: PMC3355677


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Large-scale co-expression approach to dissect secondary cell wall formation across plant species.</title>
<author>
<name sortKey="Ruprecht, Colin" sort="Ruprecht, Colin" uniqKey="Ruprecht C" first="Colin" last="Ruprecht">Colin Ruprecht</name>
<affiliation wicri:level="1">
<nlm:affiliation>Independent Research Group, Max-Planck-Institute of Molecular Plant Physiology Potsdam, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Independent Research Group, Max-Planck-Institute of Molecular Plant Physiology Potsdam</wicri:regionArea>
<wicri:noRegion>Max-Planck-Institute of Molecular Plant Physiology Potsdam</wicri:noRegion>
<wicri:noRegion>Max-Planck-Institute of Molecular Plant Physiology Potsdam</wicri:noRegion>
<wicri:noRegion>Max-Planck-Institute of Molecular Plant Physiology Potsdam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mutwil, Marek" sort="Mutwil, Marek" uniqKey="Mutwil M" first="Marek" last="Mutwil">Marek Mutwil</name>
</author>
<author>
<name sortKey="Saxe, Friederike" sort="Saxe, Friederike" uniqKey="Saxe F" first="Friederike" last="Saxe">Friederike Saxe</name>
</author>
<author>
<name sortKey="Eder, Michaela" sort="Eder, Michaela" uniqKey="Eder M" first="Michaela" last="Eder">Michaela Eder</name>
</author>
<author>
<name sortKey="Nikoloski, Zoran" sort="Nikoloski, Zoran" uniqKey="Nikoloski Z" first="Zoran" last="Nikoloski">Zoran Nikoloski</name>
</author>
<author>
<name sortKey="Persson, Staffan" sort="Persson, Staffan" uniqKey="Persson S" first="Staffan" last="Persson">Staffan Persson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22639584</idno>
<idno type="pmid">22639584</idno>
<idno type="doi">10.3389/fpls.2011.00023</idno>
<idno type="pmc">PMC3355677</idno>
<idno type="wicri:Area/Main/Corpus">002F67</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F67</idno>
<idno type="wicri:Area/Main/Curation">002F67</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F67</idno>
<idno type="wicri:Area/Main/Exploration">002F67</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Large-scale co-expression approach to dissect secondary cell wall formation across plant species.</title>
<author>
<name sortKey="Ruprecht, Colin" sort="Ruprecht, Colin" uniqKey="Ruprecht C" first="Colin" last="Ruprecht">Colin Ruprecht</name>
<affiliation wicri:level="1">
<nlm:affiliation>Independent Research Group, Max-Planck-Institute of Molecular Plant Physiology Potsdam, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Independent Research Group, Max-Planck-Institute of Molecular Plant Physiology Potsdam</wicri:regionArea>
<wicri:noRegion>Max-Planck-Institute of Molecular Plant Physiology Potsdam</wicri:noRegion>
<wicri:noRegion>Max-Planck-Institute of Molecular Plant Physiology Potsdam</wicri:noRegion>
<wicri:noRegion>Max-Planck-Institute of Molecular Plant Physiology Potsdam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mutwil, Marek" sort="Mutwil, Marek" uniqKey="Mutwil M" first="Marek" last="Mutwil">Marek Mutwil</name>
</author>
<author>
<name sortKey="Saxe, Friederike" sort="Saxe, Friederike" uniqKey="Saxe F" first="Friederike" last="Saxe">Friederike Saxe</name>
</author>
<author>
<name sortKey="Eder, Michaela" sort="Eder, Michaela" uniqKey="Eder M" first="Michaela" last="Eder">Michaela Eder</name>
</author>
<author>
<name sortKey="Nikoloski, Zoran" sort="Nikoloski, Zoran" uniqKey="Nikoloski Z" first="Zoran" last="Nikoloski">Zoran Nikoloski</name>
</author>
<author>
<name sortKey="Persson, Staffan" sort="Persson, Staffan" uniqKey="Persson S" first="Staffan" last="Persson">Staffan Persson</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="eISSN">1664-462X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant cell walls are complex composites largely consisting of carbohydrate-based polymers, and are generally divided into primary and secondary walls based on content and characteristics. Cellulose microfibrils constitute a major component of both primary and secondary cell walls and are synthesized at the plasma membrane by cellulose synthase (CESA) complexes. Several studies in Arabidopsis have demonstrated the power of co-expression analyses to identify new genes associated with secondary wall cellulose biosynthesis. However, across-species comparative co-expression analyses remain largely unexplored. Here, we compared co-expressed gene vicinity networks of primary and secondary wall CESAsin Arabidopsis, barley, rice, poplar, soybean, Medicago, and wheat, and identified gene families that are consistently co-regulated with cellulose biosynthesis. In addition to the expected polysaccharide acting enzymes, we also found many gene families associated with cytoskeleton, signaling, transcriptional regulation, oxidation, and protein degradation. Based on these analyses, we selected and biochemically analyzed T-DNA insertion lines corresponding to approximately twenty genes from gene families that re-occur in the co-expressed gene vicinity networks of secondary wall CESAs across the seven species. We developed a statistical pipeline using principal component analysis and optimal clustering based on silhouette width to analyze sugar profiles. One of the mutants, corresponding to a pinoresinol reductase gene, displayed disturbed xylem morphology and held lower levels of lignin molecules. We propose that this type of large-scale co-expression approach, coupled with statistical analysis of the cell wall contents, will be useful to facilitate rapid knowledge transfer across plant species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">22639584</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1664-462X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Large-scale co-expression approach to dissect secondary cell wall formation across plant species.</ArticleTitle>
<Pagination>
<MedlinePgn>23</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2011.00023</ELocationID>
<Abstract>
<AbstractText>Plant cell walls are complex composites largely consisting of carbohydrate-based polymers, and are generally divided into primary and secondary walls based on content and characteristics. Cellulose microfibrils constitute a major component of both primary and secondary cell walls and are synthesized at the plasma membrane by cellulose synthase (CESA) complexes. Several studies in Arabidopsis have demonstrated the power of co-expression analyses to identify new genes associated with secondary wall cellulose biosynthesis. However, across-species comparative co-expression analyses remain largely unexplored. Here, we compared co-expressed gene vicinity networks of primary and secondary wall CESAsin Arabidopsis, barley, rice, poplar, soybean, Medicago, and wheat, and identified gene families that are consistently co-regulated with cellulose biosynthesis. In addition to the expected polysaccharide acting enzymes, we also found many gene families associated with cytoskeleton, signaling, transcriptional regulation, oxidation, and protein degradation. Based on these analyses, we selected and biochemically analyzed T-DNA insertion lines corresponding to approximately twenty genes from gene families that re-occur in the co-expressed gene vicinity networks of secondary wall CESAs across the seven species. We developed a statistical pipeline using principal component analysis and optimal clustering based on silhouette width to analyze sugar profiles. One of the mutants, corresponding to a pinoresinol reductase gene, displayed disturbed xylem morphology and held lower levels of lignin molecules. We propose that this type of large-scale co-expression approach, coupled with statistical analysis of the cell wall contents, will be useful to facilitate rapid knowledge transfer across plant species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ruprecht</LastName>
<ForeName>Colin</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Independent Research Group, Max-Planck-Institute of Molecular Plant Physiology Potsdam, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mutwil</LastName>
<ForeName>Marek</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Saxe</LastName>
<ForeName>Friederike</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eder</LastName>
<ForeName>Michaela</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nikoloski</LastName>
<ForeName>Zoran</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Persson</LastName>
<ForeName>Staffan</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arabidopsis</Keyword>
<Keyword MajorTopicYN="N">cellulose</Keyword>
<Keyword MajorTopicYN="N">comparative co-expression analysis</Keyword>
<Keyword MajorTopicYN="N">secondary cell wall</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>03</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>06</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22639584</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2011.00023</ArticleId>
<ArticleId IdType="pmc">PMC3355677</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Dec;11(6):647-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Nov 12;330(6006):968-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21071669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20852069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2763-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jan;134(1):224-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jan;14(1):165-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11826306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ultrastruct Res. 1969 Jan;26(1):31-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4887011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Nov 23;5(11):e15481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21124849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Mar;61(6):1107-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Feb;57(4):732-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18980662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):590-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:263-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2009 Oct;26(10):1251-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19779640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 May;66(3):401-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21251108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2006;22:53-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2010 Jun;38(3):755-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20491661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jan 30;279(5351):717-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9445479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19920124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):252-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18485800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2776-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15932943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jan;152(1):29-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19889879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 May;66(3):387-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21288268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2281-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 May;14(5):248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19375973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):549-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17322407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15566-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17878302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1633-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Dec;9(6):621-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17011813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Oct 1;17(19):5563-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9755157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 15;104(20):8550-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12866-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jun;17(6):1749-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):895-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17878303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 May;9(5):689-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9165747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11417-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jun 9;312(5779):1491-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2003 Oct 21;1(20):3621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14599028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1992 Feb;186(3):409-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24186738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(2):239-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Dec;12(12):2529-2540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11148295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W320-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18480120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):237-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 24;306(5705):2206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 6;283(23):15550-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18347017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18395489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Sep;2(5):1015-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825676</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Eder, Michaela" sort="Eder, Michaela" uniqKey="Eder M" first="Michaela" last="Eder">Michaela Eder</name>
<name sortKey="Mutwil, Marek" sort="Mutwil, Marek" uniqKey="Mutwil M" first="Marek" last="Mutwil">Marek Mutwil</name>
<name sortKey="Nikoloski, Zoran" sort="Nikoloski, Zoran" uniqKey="Nikoloski Z" first="Zoran" last="Nikoloski">Zoran Nikoloski</name>
<name sortKey="Persson, Staffan" sort="Persson, Staffan" uniqKey="Persson S" first="Staffan" last="Persson">Staffan Persson</name>
<name sortKey="Saxe, Friederike" sort="Saxe, Friederike" uniqKey="Saxe F" first="Friederike" last="Saxe">Friederike Saxe</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Ruprecht, Colin" sort="Ruprecht, Colin" uniqKey="Ruprecht C" first="Colin" last="Ruprecht">Colin Ruprecht</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E11 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002E11 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22639584
   |texte=   Large-scale co-expression approach to dissect secondary cell wall formation across plant species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22639584" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020